2)- Jonas Anderegg, Radek Zenkl, Achim Walter, Andreas Hund, Bruce A McDonald. Combining High-Resolution Imaging, Deep Learning, and Dynamic Modeling to Separate Disease and Senescence in Wheat Canopies.Plant phenomics (Washington, D.C.). 2023, 5: 0053
7)- Qiushi Yu, Jingqi Wang, Hui Tang, Jiaxi Zhang, Wenjie Zhang, Liantao Liu, Nan Wang. Application of Improved UNet and EnglightenGAN for Segmentation and Reconstruction of In Situ Roots.Plant phenomics (Washington, D.C.). 2023, 5: 0066
8)- Wenli Zhang, Yuxin Liu, Chao Zheng, Guoqiang Cui, Wei Guo. EasyDAM_V3: Automatic Fruit Labeling Based on Optimal Source Domain Selection and Data Synthesis via a Knowledge Graph.Plant phenomics (Washington, D.C.). 2023, 5: 0067
9)- Dominik Rößle, Lukas Prey, Ludwig Ramgraber, Anja Hanemann, Daniel Cremers, Patrick Ole Noack, Torsten Schön. Efficient Noninvasive FHB Estimation using RGB Images from a Novel Multiyear, Multirater Dataset.Plant phenomics (Washington, D.C.). 2023, 5: 0068
10)- Ruina Zhao, Yujie Guan, Yuqi Lu, Ze Ji, Xiang Yin, Weikuan Jia. FCOS-LSC: A Novel Model for Green Fruit Detection in a Complex Orchard Environment.Plant phenomics (Washington, D.C.). 2023, 5: 0069
11)- Stefan Paulus, Benjamin Leiding. Can Distributed Ledgers Help to Overcome the Need of Labeled Data for Agricultural Machine Learning Tasks?Plant phenomics (Washington, D.C.). 2023, 5: 0070
13)- John Lagergren, Mirko Pavicic, Hari B Chhetri, Larry M York, Doug Hyatt, David Kainer, Erica M Rutter, Kevin Flores, Jack Bailey-Bale, Marie Klein, Gail Taylor, Daniel Jacobson, Jared Streich. Few-Shot Learning Enables Population-Scale Analysis of Leaf Traits in .Plant phenomics (Washington, D.C.). 2023, 5: 0072
15)- Qingfeng Song, Fusang Liu, Hongyi Bu, Xin-Guang Zhu. Quantifying Contributions of Different Factors to Canopy Photosynthesis in 2 Maize Varieties: Development of a Novel 3D Canopy Modeling Pipeline.Plant phenomics (Washington, D.C.). 2023, 5: 0075
16)- Tobias Selzner, Jannis Horn, Magdalena Landl, Andreas Pohlmeier, Dirk Helmrich, Katrin Huber, Jan Vanderborght, Harry Vereecken, Sven Behnke, Andrea Schnepf. 3D U-Net Segmentation Improves Root System Reconstruction from 3D MRI Images in Automated and Manual Virtual Reality Work Flows.Plant phenomics (Washington, D.C.). 2023, 5: 0076
17)- Houssem E M Triki, Fabienne Ribeyre, Fabrice Pinard, Marc Jaeger. Coupling Plant Growth Models and Pest and Disease Models: An Interaction Structure Proposal, MIMIC.Plant phenomics (Washington, D.C.). 2023, 5: 0077
22)- Amogh Joshi, Dario Guevara, Mason Earles. Standardizing and Centralizing Datasets for Efficient Training of Agricultural Deep Learning Models.Plant phenomics (Washington, D.C.). 2023, 5: 0084
23)- Wensheng Du, Ping Liu. Instance Segmentation and Berry Counting of Table Grape before Thinning Based on AS-SwinT.Plant phenomics (Washington, D.C.). 2023, 5: 0085
25)- Yapeng Wu, Wenhui Wang, Yangyang Gu, Hengbiao Zheng, Xia Yao, Yan Zhu, Weixing Cao, Tao Cheng. SPSI: A Novel Composite Index for Estimating Panicle Number in Winter Wheat before Heading from UAV Multispectral Imagery.Plant phenomics (Washington, D.C.). 2023, 5: 0087
29)- Min Li, Pengcheng Hu, Di He, Bangyou Zheng, Yan Guo, Yushan Wu, Tao Duan. Quantification of the Cumulative Shading Capacity in a Maize-Soybean Intercropping System Using an Unmanned Aerial Vehicle.Plant phenomics (Washington, D.C.). 2023, 5: 0095
36)- Zixuan Teng, Jiawei Chen, Jian Wang, Shuixiu Wu, Riqing Chen, Yaohai Lin, Liyan Shen, Robert Jackson, Ji Zhou, Changcai Yang. Panicle-Cloud: An Open and AI-Powered Cloud Computing Platform for Quantifying Rice Panicles from Drone-Collected Imagery to Enable the Classification of Yield Production in Rice.Plant phenomics (Washington, D.C.). 2023, 5: 0105
39)- Jan Stejskal, Jaroslav Čepl, Eva Neuwirthová, Olusegun Olaitan Akinyemi, Jiří Chuchlík, Daniel Provazník, Markku Keinänen, Petya Campbell, Jana Albrechtová, Milan Lstibůrek, Zuzana Lhotáková. Making the Genotypic Variation Visible: Hyperspectral Phenotyping in Scots Pine Seedlings.Plant phenomics (Washington, D.C.). 2023, 5: 0111
41)- Yanan Li, Yuling Tang, Yifei Liu, Dingrun Zheng. Semi-supervised Counting of Grape Berries in the Field Based on Density Mutual Exclusion.Plant phenomics (Washington, D.C.). 2023, 5: 0115
43)- Tingting Wu, Peng Shen, Jianlong Dai, Yuntao Ma, Yi Feng. A Pathway to Assess Genetic Variation of Wheat Germplasm by Multidimensional Traits with Digital Images.Plant phenomics (Washington, D.C.). 2023, 5: 0119
44)- Laëtitia Lemiere, Marc Jaeger, Marie Gosme, Gérard Subsol. Combinatorial Maps, a New Framework to Model Agroforestry Systems.Plant phenomics (Washington, D.C.). 2023, 5: 0120
49)- Guohui Ding, Liyan Shen, Jie Dai, Robert Jackson, Shuchen Liu, Mujahid Ali, Li Sun, Mingxing Wen, Jin Xiao, Greg Deakin, Dong Jiang, Xiu-E Wang, Ji Zhou. The Dissection of Nitrogen Response Traits Using Drone Phenotyping and Dynamic Phenotypic Analysis to Explore N Responsiveness and Associated Genetic Loci in Wheat.Plant phenomics (Washington, D.C.). 2023, 5: 0128
50)- Xinquan Ye, Jie Pan, Gaosheng Liu, Fan Shao. Exploring the Close-Range Detection of UAV-Based Images on Pine Wilt Disease by an Improved Deep Learning Method.Plant phenomics (Washington, D.C.). 2023, 5: 0129