Showing Results : 1-1 of 1
Sort By :
  • Physics and Imaging in Radiation Oncology: 2023, vol: 28, issue:
  • 1)- Manuela Burghelea, Jinane Bakkali Tahiri, Jennifer Dhont, Martin Kyndt, Akos Gulyban, Juliane Szkitsak, Evelien Bogaert, Dirk van Gestel, Nick Reynaert. Results of a multicenter 4D computed tomography quality assurance audit: Evaluating image accuracy and consistency. Physics and imaging in radiation oncology. 2023, 28: 100479
    Cited : 1
    Read More
  • 2)- Hana Baroudi, Callistus I Huy Minh Nguyen, Sean Maroongroge, Benjamin D Smith, Joshua S Niedzielski, Simona F Shaitelman, Adam Melancon, Sanjay Shete, Thomas J Whitaker, Melissa P Mitchell, Isidora Yvonne Arzu, Jack Duryea, Soleil Hernandez, Daniel El Basha, Raymond Mumme, Tucker Netherton, Karen Hoffman, Laurence Court. Automated contouring and statistical process control for plan quality in a breast clinical trial. Physics and imaging in radiation oncology. 2023, 28: 100486
    Cited : 0
    Read More
  • 3)- Lisa Alborghetti, Roberta Castriconi, Carlos Sosa Marrero, Alessia Tudda, Maria Giulia Ubeira-Gabellini, Sara Broggi, Javier Pascau, Lucia Cubero, Cesare Cozzarini, Renaud De Crevoisier, Tiziana Rancati, Oscar Acosta, Claudio Fiorino. Selective sparing of bladder and rectum sub-regions in radiotherapy of prostate cancer combining knowledge-based automatic planning and multicriteria optimization. Physics and imaging in radiation oncology. 2023, 28: 100488
    Cited : 1
    Read More
  • 4)- Robin den Boer, Kelvin Ng Wei Siang, Mandy Yuen, Alicia Borggreve, Ingmar Defize, Astrid van Lier, Jelle Ruurda, Richard van Hillegersberg, Stella Mook, Gert Meijer. A robust semi-automatic delineation workflow using denoised diffusion weighted magnetic resonance imaging for response assessment of patients with esophageal cancer treated with neoadjuvant chemoradiotherapy. Physics and imaging in radiation oncology. 2023, 28: 100489
    Cited : 1
    Read More
  • 5)- Alannah Kejda, Alexandra Quinn, Shelley Wong, Toby Lowe, Isabelle Fent, Maegan Gargett, Stephanie Roderick, Kylie Grimberg, Sarah Bergamin, Thomas Eade, Jeremy Booth. Evaluation of the clinical feasibility of cone-beam computed tomography guided online adaption for simulation-free palliative radiotherapy. Physics and imaging in radiation oncology. 2023, 28: 100490
    Cited : 2
    Read More
  • 6)- Alex T Price, Kylie H Kang, Francisco J Reynoso, Eric Laugeman, Christopher D Abraham, Jiayi Huang, Jessica Hilliard, Nels C Knutson, Lauren E Henke. trial of simulation-free hippocampal-avoidance whole brain adaptive radiotherapy. Physics and imaging in radiation oncology. 2023, 28: 100491
    Cited : 2
    Read More
  • 7)- Michele Zeverino, Consiglia Piccolo, Diana Wuethrich, Wendy Jeanneret-Sozzi, Maud Marguet, Jean Bourhis, Francois Bochud, Raphael Moeckli. Clinical implementation of deep learning-based automated left breast simultaneous integrated boost radiotherapy treatment planning. Physics and imaging in radiation oncology. 2023, 28: 100492
    Cited : 2
    Read More
  • 8)- Torbjörn Näsmark, Jonas Andersson. The influence of dual-energy computed tomography image noise in proton therapy treatment planning. Physics and imaging in radiation oncology. 2023, 28: 100493
    Cited : 0
    Read More
  • 9)- Geert De Kerf, Michaël Claessens, Fadoua Raouassi, Carole Mercier, Daan Stas, Piet Ost, Piet Dirix, Dirk Verellen. A geometry and dose-volume based performance monitoring of artificial intelligence models in radiotherapy treatment planning for prostate cancer. Physics and imaging in radiation oncology. 2023, 28: 100494
    Cited : 1
    Read More
  • 10)- Jens Edmund, Marianne Feen Rønjom, Mette van Overeem Felter, Christian Maare, Annica Margrete Juul Dam, Eirini Tsaggari, Patrick Wohlfahrt. Split-filter dual energy computed tomography radiotherapy: From calibration to image guidance. Physics and imaging in radiation oncology. 2023, 28: 100495
    Cited : 2
    Read More
  • 11)- Nienke Bakx, Maurice van der Sangen, Jacqueline Theuws, Johanna Bluemink, Coen Hurkmans. Evaluation of a clinically introduced deep learning model for radiotherapy treatment planning of breast cancer. Physics and imaging in radiation oncology. 2023, 28: 100496
    Cited : 0
    Read More
  • 12)- Hafiz Muhammad Fahad, Stefan Dorsch, Moritz Zaiss, Christian P Karger. Multi-parametric optimization of magnetic resonance imaging sequences for magnetic resonance-guided radiotherapy. Physics and imaging in radiation oncology. 2023, 28: 100497
    Cited : 0
    Read More
  • 13)- Maria Kawula, Marica Vagni, Davide Cusumano, Luca Boldrini, Lorenzo Placidi, Stefanie Corradini, Claus Belka, Guillaume Landry, Christopher Kurz. Prior knowledge based deep learning auto-segmentation in magnetic resonance imaging-guided radiotherapy of prostate cancer. Physics and imaging in radiation oncology. 2023, 28: 100498
    Cited : 3
    Read More
  • 14)- Annika Mannerberg, Martin P Nilsson, Anneli Edvardsson, Kristin Karlsson, Sofie Ceberg. Abdominal compression as motion management for stereotactic radiotherapy of ventricular tachycardia. Physics and imaging in radiation oncology. 2023, 28: 100499
    Cited : 1
    Read More
  • 15)- Roque Rodríguez Outeiral, Nicole Ferreira Silvério, Patrick J González, Eva E Schaake, Tomas Janssen, Uulke A van der Heide, Rita Simões. A network score-based metric to optimize the quality assurance of automatic radiotherapy target segmentations. Physics and imaging in radiation oncology. 2023, 28: 100500
    Cited : 2
    Read More
  • 16)- Gabriele Palazzo, Paola Mangili, Chiara Deantoni, Andrei Fodor, Sara Broggi, Roberta Castriconi, Maria Giulia Ubeira Gabellini, Antonella Del Vecchio, Nadia G Di Muzio, Claudio Fiorino. Real-world validation of Artificial Intelligence-based Computed Tomography auto-contouring for prostate cancer radiotherapy planning. Physics and imaging in radiation oncology. 2023, 28: 100501
    Cited : 1
    Read More
  • 17)- Baoqiang Ma, Jiapan Guo, Hung Chu, Lisanne V van Dijk, Peter M A van Ooijen, Johannes A Langendijk, Stefan Both, Nanna M Sijtsema. Comparison of computed tomography image features extracted by radiomics, self-supervised learning and end-to-end deep learning for outcome prediction of oropharyngeal cancer. Physics and imaging in radiation oncology. 2023, 28: 100502
    Cited : 1
    Read More
  • 18)- Marius Treutwein. Röntgen's last will. Physics and imaging in radiation oncology. 2023, 28: 100503
    Cited : 0
    Read More
  • 19)- Aronne M Schottstaedt, Eric S Paulson, Jason C Rubenstein, Xinfeng Chen, Eenas A Omari, X Allen Li, Chris J Schultz, Lindsay L Puckett, Clifford G Robinson, Filippo Alongi, Elizabeth M Gore, William A Hall. Development of a comprehensive cardiac atlas on a 1.5 Tesla Magnetic Resonance Linear Accelerator. Physics and imaging in radiation oncology. 2023, 28: 100504
    Cited : 1
    Read More
  • 20)- Joseph Weygand, Tess Armstrong, John Michael Bryant, Jacqueline M Andreozzi, Ibrahim M Oraiqat, Steven Nichols, Casey L Liveringhouse, Kujtim Latifi, Kosj Yamoah, James R Costello, Jessica M Frakes, Eduardo G Moros, Issam M El Naqa, Arash O Naghavi, Stephen A Rosenberg, Gage Redler. Accurate, repeatable, and geometrically precise diffusion-weighted imaging on a 0.35 T magnetic resonance imaging-guided linear accelerator. Physics and imaging in radiation oncology. 2023, 28: 100505
    Cited : 3
    Read More
  • 21)- John Cotterill, Sam Flynn, Russell Thomas, Anna Subiel, Nigel Lee, David Shipley, Hugo Palmans, Ana Lourenço. Monte Carlo modelling of a prototype small-body portable graphite calorimeter for ultra-high dose rate proton beams. Physics and imaging in radiation oncology. 2023, 28: 100506
    Cited : 1
    Read More
  • 22)- Madelon van den Dobbelsteen, Sara L Hackett, Bram van Asselen, Stijn Oolbekkink, Jochem W H Wolthaus, J H Wilfred de Vries, Bas W Raaymakers. Experimental validation of multi-fraction online adaptations in magnetic resonance guided radiotherapy. Physics and imaging in radiation oncology. 2023, 28: 100507
    Cited : 1
    Read More
  • 23)- Martin F Fast, Suzanne Lydiard, Judit Boda-Heggemann, Stephanie Tanadini-Lang, Ludvig P Muren, Catharine H Clark, Oliver Blanck. Precision requirements in stereotactic arrhythmia radioablation for ventricular tachycardia. Physics and imaging in radiation oncology. 2023, 28: 100508
    Cited : 3
    Read More
  • 24)- Stefanie Ehrbar, Markus Schrader, Giulia Marvaso, Sophie Perryck, Janita E Van Timmeren, Matea Pavic, Amanda Moreira, Stephanie Tanadini-Lang, Matthias Guckenberger, Nicolaus Andratschke, Helena Garcia Schüler. Intra- and inter-fraction breath-hold variations and margins for radiotherapy of abdominal targets. Physics and imaging in radiation oncology. 2023, 28: 100509
    Cited : 0
    Read More
  • 25)- Maximilian Grohmann, Cordula Petersen, Manuel Todorovic. Benefits and considerations in using a novel computed tomography system optimized for radiotherapy planning. Physics and imaging in radiation oncology. 2023, 28: 100510
    Cited : 0
    Read More
  • 26)- Blanche Texier, Cédric Hémon, Pauline Lekieffre, Emma Collot, Safaa Tahri, Hilda Chourak, Jason Dowling, Peter Greer, Igor Bessieres, Oscar Acosta, Adrien Boue-Rafle, Jennifer Le Guevelou, Renaud de Crevoisier, Caroline Lafond, Joël Castelli, Anaïs Barateau, Jean-Claude Nunes. Computed tomography synthesis from magnetic resonance imaging using cycle Generative Adversarial Networks with multicenter learning. Physics and imaging in radiation oncology. 2023, 28: 100511
    Cited : 3
    Read More
  • 27)- S A Yoganathan, Souha Aouadi, Sharib Ahmed, Satheesh Paloor, Tarraf Torfeh, Noora Al-Hammadi, Rabih Hammoud. Generating synthetic images from cone beam computed tomography using self-attention residual UNet for head and neck radiotherapy. Physics and imaging in radiation oncology. 2023, 28: 100512
    Cited : 1
    Read More
  • 28)- Nikolaos Grivas, Inge Cox, Thierry Boellaard, Henk van der Poel. Re. van den Berg et al, Deep learning for automated contouring of neurovascular structures on magnetic resonance imaging for prostate cancer patients. Physics and imaging in radiation oncology. 2023, 28: 100513
    Cited : 1
    Read More
  • 29)- Ingeborg van den Berg, Mark H F Savenije, Frederik R Teunissen, Sandrine M G van de Pol, Marnix J A Rasing, Harm H E van Melick, Wyger M Brink, Johannes C J de Boer, Cornelis A T van den Berg, Jochem R N van der Voort van Zyp. In response to Grivas et al. Physics and imaging in radiation oncology. 2023, 28: 100514
    Cited : 0
    Read More
  • 30)- Gerd Heilemann, Martin Buschmann, Wolfgang Lechner, Vincent Dick, Franziska Eckert, Martin Heilmann, Harald Herrmann, Matthias Moll, Johannes Knoth, Stefan Konrad, Inga-Malin Simek, Christopher Thiele, Alexandru Zaharie, Dietmar Georg, Joachim Widder, Petra Trnkova. Clinical Implementation and Evaluation of Auto-Segmentation Tools for Multi-Site Contouring in Radiotherapy. Physics and imaging in radiation oncology. 2023, 28: 100515
    Cited : 4
    Read More
  • 31)- Felix Horst. Calorimetry as a tool to improve the dosimetric accuracy in novel radiotherapy modalities. Physics and imaging in radiation oncology. 2023, 28: 100516
    Cited : 0
    Read More
  • 32)- Riccardo Via, Katarina Bryjova, Alessia Pica, Guido Baroni, Antony Lomax, Damien Charles Weber, Giovanni Fattori, Jan Hrbacek. Multi-camera optical tracking and fringe pattern analysis for eye surface profilometry in ocular proton therapy. Physics and imaging in radiation oncology. 2023, 28: 100517
    Cited : 0
    Read More
  • 33)- James L Bedford, Merina Ahmed. Functional lung avoidance in radiotherapy using optimisation of biologically effective dose with non-coplanar beam orientations. Physics and imaging in radiation oncology. 2023, 28: 100518
    Cited : 1
    Read More
  • 34)- Djoya Hattu, Daisy Emans, Judith van der Stoep, Richard Canters, Judith van Loon, Dirk De Ruysscher. Comparison of photon intensity modulated, hybrid and volumetric modulated arc radiation treatment techniques in locally advanced non-small cell lung cancer. Physics and imaging in radiation oncology. 2023, 28: 100519
    Cited : 0
    Read More
  • 35)- Monjoy Saha, Jae Won Jung, Sung-Woo Lee, Choonik Lee, Choonsik Lee, Matthew M Mille. A deep learning segmentation method to assess dose to organs at risk during breast radiotherapy. Physics and imaging in radiation oncology. 2023, 28: 100520
    Cited : 2
    Read More
  • 36)- Wouter van Elmpt, Vicki Trier Taasti, Kathrine Røe Redalen. Current and future developments of synthetic computed tomography generation for radiotherapy. Physics and imaging in radiation oncology. 2023, 28: 100521
    Cited : 2
    Read More
 
 


Journal List
Links
Content Links
About Us

0